【STM32】TIM定时器编码器

news/2025/6/6 3:12:09

1 编码器接口简介

Encoder Interface 编码器接口

编码器接口可接收增量(正交)编码器的信号,根据编码器旋转产生的正交信号脉冲,自动控制CNT自增或自减,从而指示编码器的位置、旋转方向和旋转速度

接收正交信号,自动执行CNT自增或者自减,编码器接口相当于带有方向控制的外部时钟,同时控制着CNT的计数时钟和计数方向。每隔一段时间去取一次CNT的值,再把CNT清零,每次取出来的值就表示编码器的速度。(测频法)

每个高级定时器和通用定时器都拥有1个编码器接口

两个输入引脚借用了输入捕获的通道1和通道2(CH1和CH2)

1.1 正交编码器

正交编码器一般可以测量位置或者带有方向的速度值

旋转编码器:用来测量位置、速度或旋转方向的装置,当其旋转轴旋转时,其输出端可以输出与旋转速度和方向对应的方波信号,读取方波信号的频率和相位信息即可得知旋转轴的速度和方向

类型:机械触点式/霍尔传感器式/光栅式

 

方波频率代表速度。正转时A相提前B相90°;反转时A相滞后B相90°

首先把A\相和B相的所有边沿作为计数器的计数时钟,出现边沿信号时就计数器自增或者自减;计数的方向由另一相的状态来确定。当出现某个边沿时,判断另一相高低电平,如果另一相的状态出现在上面这个表中,那就是正转,计数自增;否则就是反转,计数自减。这样就可以实现编码器接口的功能了。

编码器接口有两个输入端,分别接到编码器的A相和B相,所以编码器的输入引脚就是定时器的CH1和CH2引脚。编码器的输出部分相当于从模式的控制器了,控制CNT的计数时钟和计数方向。计数器的自增和自减受编码器控制。

1.2 编码器接口基本结构

很清晰

1.3 工作模式

这里TI1FP1和TI2FP2接的就是AB相。计数和前面一样。

正转向上计数,反转向下计数。

1.4 实例图

均不反向,使用TI1和TI2都计数

很清晰。

TI1反向,TI2不反向。极性的变化对计数的影响。

这里的极性选择就是高低电平的极性选择了。如果选择上升沿的参数,就是信号直通过来,高低电平极性不反转;如果选择下降沿的参数,就是信号通过非门,高低电平反转。

很清晰。

手册

2  编码器接口测速

2.1 接线图

引脚定义

计划用TIM3的通道1和通道2

2.2 模块封装

按这个配置

库函数

// 定时器编码器接口配置
void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode,uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity);

版本一:Encoder.c

#include "stm32f10x.h"                  // Device header// 编码器接口初始化函数
void EnCoder_Init(void)
{// 1开启时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);// 2配置GPIOGPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPU;         		// 上拉输入模式GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStruct);// 3配置时基单元TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;TIM_TimeBaseInitStruct.TIM_Prescaler = 1 - 1;                    	// PSC预分频器的值,不分频TIM_TimeBaseInitStruct.TIM_Period = 65536 - 1;                     	// ARR自动重装器的值 TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;      	// 向上计数,没有用TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1;			// 不分频TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0;                	// 重复计数器的值TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStruct);// 4配置输入捕获单元(只有极性和滤波器两个参数有用)TIM_ICInitTypeDef TIM_ICInitStruct;TIM_ICStructInit(&TIM_ICInitStruct);                               // 结构体初始化TIM_ICInitStruct.TIM_Channel = TIM_Channel_1;					   // 通道1TIM_ICInitStruct.TIM_ICFilter = 0xF;							   // 滤波器
//	TIM_ICInitStruct.TIM_ICPolarity = TIM_ICPolarity_Rising;		   // 和后面重复
//	TIM_ICInitStruct.TIM_ICSelection = TIM_ICSelection_DirectTI;       // 无作用
//	TIM_ICInitStruct.TIM_ICPrescaler = TIM_ICPSC_DIV1;                 // 无作用TIM_ICInit(TIM3, &TIM_ICInitStruct);TIM_ICInitStruct.TIM_Channel = TIM_Channel_2;TIM_ICInitStruct.TIM_ICFilter = 0xF;//	TIM_ICInitStruct.TIM_ICPolarity = TIM_ICPolarity_Rising;	   // 和后面重复TIM_ICInit(TIM3, &TIM_ICInitStruct);// 5配置编码器接口模式// TIM_ICPolarity_Rising这个通道不反向,TIM_ICPolarity_Falling这个通道反向// 后两个参数相反就是方向相反TIM_EncoderInterfaceConfig(TIM3, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);// 6启动定时器TIM_Cmd(TIM3, ENABLE);
}// 获取CNT的值
int16_t Encoder_Get(void)
{return TIM_GetCounter(TIM3);
}

版本二:Encoder.c

#include "stm32f10x.h"                  // Device header// 编码器接口初始化函数
void EnCoder_Init(void)
{// 1开启时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);// 2配置GPIOGPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPU;         		// 上拉输入模式GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStruct);// 3配置时基单元TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;TIM_TimeBaseInitStruct.TIM_Prescaler = 1 - 1;                    	// PSC预分频器的值,不分频TIM_TimeBaseInitStruct.TIM_Period = 65536 - 1;                     	// ARR自动重装器的值 TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;      	// 向上计数,没有用TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1;			// 不分频TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0;                	// 重复计数器的值TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStruct);// 4配置输入捕获单元(只有极性和滤波器两个参数有用)TIM_ICInitTypeDef TIM_ICInitStruct;TIM_ICStructInit(&TIM_ICInitStruct);                               // 结构体初始化TIM_ICInitStruct.TIM_Channel = TIM_Channel_1;					   // 通道1TIM_ICInitStruct.TIM_ICFilter = 0xF;							   // 滤波器
//	TIM_ICInitStruct.TIM_ICPolarity = TIM_ICPolarity_Rising;		   // 和后面重复
//	TIM_ICInitStruct.TIM_ICSelection = TIM_ICSelection_DirectTI;       // 无作用
//	TIM_ICInitStruct.TIM_ICPrescaler = TIM_ICPSC_DIV1;                 // 无作用TIM_ICInit(TIM3, &TIM_ICInitStruct);TIM_ICInitStruct.TIM_Channel = TIM_Channel_2;TIM_ICInitStruct.TIM_ICFilter = 0xF;//	TIM_ICInitStruct.TIM_ICPolarity = TIM_ICPolarity_Rising;	   // 和后面重复TIM_ICInit(TIM3, &TIM_ICInitStruct);// 5配置编码器接口模式// TIM_ICPolarity_Rising这个通道不反向,TIM_ICPolarity_Falling这个通道反向// 后两个参数相反就是方向相反TIM_EncoderInterfaceConfig(TIM3, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);// 6启动定时器TIM_Cmd(TIM3, ENABLE);
}// 获取CNT的值
int16_t Encoder_Get(void)
{
//    return TIM_GetCounter(TIM3);// 读取cnt,把cnt清零的逻辑int16_t temp = TIM_GetCounter(TIM3);TIM_SetCounter(TIM3, 0);return temp;
}

2.3 主函数

版本一:主函数

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Timer.h"
#include "EnCoder.h"int main()
{OLED_Init();								// 初始化OLEDEnCoder_Init();
//	Timer_Init();								// 初始化定时器OLED_ShowString(1, 1, "CNT:");   			// 显示字符串while (1){OLED_ShowNum(1, 5, Encoder_Get(), 5);    // 显示CNT计数器}
}

版本二:主函数

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Timer.h"
#include "EnCoder.h"int16_t speed;int main()
{OLED_Init();								// 初始化OLEDEnCoder_Init();Timer_Init();								// 初始化定时器OLED_ShowString(1, 1, "speed:");   			// 显示字符串while (1){OLED_ShowSignedNum(1, 7, speed, 5);    		 // 显示CNT计数器}
}// 中断函数
void TIM2_IRQHandler(void)
{// 检测中断标志位,确保是设置的中断源触发的这个函数if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET){// 中断处理speed = Encoder_Get();// 清除中断标志TIM_ClearITPendingBit(TIM2, TIM_IT_Update);}
}

文章来源:https://blog.csdn.net/Zhouzi_heng/article/details/134897966
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:https://dhexx.cn/news/show-5177721.html

相关文章

解密QQ号——C语言

题目: 有一串已加密的数字“6 3 1 7 5 8 9 2 4”解密规则:首先将第1个数字删除,紧接着将第2个数字放到这串数字的末尾,再将第3个数字删除并将第4个数字放到这串数字的末尾,再将第5个数删除 代码实现: #inc…

【Linux】系统初识之冯诺依曼体系结构与操作系统

👀樊梓慕:个人主页 🎥个人专栏:《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》 🌝每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.冯诺依曼体系结构 2.操作…

springboot+jdbcTemplate+sqlite编程示例——以沪深300成分股数据处理为例

引言 我们在自己做一些小的项目或者小的数据处理分析的时候,很多时候是不需要用到mysql这样的大型数据库,并且也不需要用到maven这样很重的框架的,取而代之可以使用jdbcTemplatesqlite这样的组合。 本文就介绍一下使用springbootjdbcTempla…

Python:核心知识点整理大全11-笔记

目录 ​编辑 6.2.4 修改字典中的值 6.2.5 删除键—值对 注意 删除的键—值对永远消失了。 6.2.6 由类似对象组成的字典 6.3 遍历字典 6.3.1 遍历所有的键—值对 6.3.2 遍历字典中的所有键 往期快速传送门👆(在文章最后): 6.…

WorkPlus即时通讯,让沟通零障碍!企业协作更高效

如今,随着信息技术的快速发展,企业对于高效沟通和即时协作的需求也日益增长。在这个数字化时代,WorkPlus作为一款领先的企业级移动办公平台,以其强大的即时通讯功能和卓越的用户体验,成功为企业打造了高效沟通的新时代…

(C)一些题11

1. #include<stdio.h> #include<string.h> void main() { char *s1"ABCDEF"&#xff0c;*s2"aB"&#xff1b; s1; s2; puts(s1)&#xff1b; puts(s2)&#xff1b; printf("%d\n",strcmp(s1,s2))&#xff1b; } 答案&#xff1…

Linux登录/重启时自动执行

参考链接 Linux每次登录时自动执行-CSDN linux设置开机启动脚本的3种方法 Linux每次登录时自动执行 一、所有用户每次登录时自动执行。 1、在/etc/profile文件末尾添加。 将启动命令添加到/etc/profile文件末尾。 2、在/etc/profile.d/目录下添加sh脚本。 在/etc/profile.…

XXL-JOB 日志表和日志文件自动清理

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

【数据结构】堆的应用(小根堆)

知识概览 堆用来维护一个数据集合。堆是一个二叉树&#xff0c;可以说是二叉树的一个应用&#xff0c;堆还是一个完全二叉树。 小根堆&#xff1a;每个点都满足它小于等于左右两边的点。 一维数组用来存下来一棵树。在堆中&#xff0c;x的左儿子是2x&#xff0c;右儿子是2x …

hdlbits系列verilog解答(mt2015_q4)-54

文章目录 一、问题描述二、verilog源码三、仿真结果一、问题描述 本次使用系列文章52和53中实现的子模块,实现以下组合逻辑电路。 二、verilog源码 module top_module (input x, input y, output z);wire [3:0