算法笔记(五)——分治

news/2025/6/15 0:36:03

文章目录

  • 算法笔记(五)——分治
  • 快排
    • 颜色分类
    • 排序数组
    • 数组中的第K个最大元素
    • 库存管理 III
  • 归并
    • 排序数组
    • 交易逆序对的总数
    • 计算右侧小于当前元素的个数
    • 翻转对

算法笔记(五)——分治

分治算法字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序)…

分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

步骤

  • 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题
  • 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
  • 合并:将各个子问题的解合并为原问题的解

经典的分治算法有二分搜索,归并排序,快速排序,。

快排

颜色分类

题目:颜色分类

在这里插入图片描述
思路

  • 初始化三个指针:
  • i遍历数组;
  • left左侧均为0
  • right右侧均为2
  • 遍历过程中遇到0swap(nums[++left],nums[i++])
  • 遇到1i++,不进行交换
  • 遇到2swap(nums[--right], nums[i])
  • 循环条件i < right

C++代码

class Solution 
{
public:void sortColors(vector<int>& nums) {for(int i = 0, left = -1, right = nums.size(); i < right; ){if(nums[i] == 0) swap(nums[++left], nums[i++]);else if(nums[i] == 1)i++;elseswap(nums[--right], nums[i]);}}
};

排序数组

题目:排序数组

在这里插入图片描述
思路

  • 我们将数组划分为三块,再来实现快排,将数组划分为三个部分:小于、等于、大于基准值;
  • <key,=key,>key

三路划分:减少重复元素的递归处理(相同元素过多的话,可以减小递归深度)、避免不必要的交换(将相同元素聚集在一起,避免了不必要的交换操作)

C++代码

class Solution 
{
public:int getKey(vector<int>& nums, int left, int right){return nums[rand() % (right - left + 1) + left];}void qsort(vector<int>& nums, int l, int r){if(l >= r) return;int key = getKey(nums, l, r);int i = l, left = l - 1, right = r + 1;while(i < right){if(nums[i] < key) swap(nums[++left], nums[i++]);else if(nums[i] == key) i++;else swap(nums[--right], nums[i]);}qsort(nums, l, left);qsort(nums, right, r);}vector<int> sortArray(vector<int>& nums) {srand(time(NULL));qsort(nums, 0, nums.size() - 1);return nums;}
};

数组中的第K个最大元素

题目:数组中的第K个最大元素

在这里插入图片描述

思路

常规解法,利用堆排,但时间复杂度不为O(N)

快速选择算法(快排)O(N)

  • 三路划分,将数组划分为三块;
  • 大于key的元素个数为c,等于key的元素个数为b,小于key元素个数为a
  • c >= k,则第k大元素在右侧,继续在右侧递归寻找第k大元素;
  • b + c >= k,则直接返回基准元素,即为第k大元素;
  • 若上述均不满足,则第k大元素在左侧,继续在左侧递归寻找第k大元素,此时k = k - b - c

C++代码

class Solution 
{
public:// 数组中获得随机值 int getKey(vector<int>& nums, int l, int r) {return nums[rand() % (r - l + 1) + l];}int qsort(vector<int>& nums, int l, int r, int k){if(l == r) return nums[l];// 随机选择基准元素int key = getKey(nums, l, r);// 根据基准元素将数组分为三块int i = l, left = l - 1, right = r + 1;while(i < right){if(nums[i] < key) swap(nums[++left], nums[i++]);else if(nums[i] == key) i++;else swap(nums[--right], nums[i]);}int b = right - 1 - (left + 1) + 1; // 等于key的数量int c = r - right + 1; // 大于key的数量if(c >= k) return qsort(nums, right, r, k);else if((b + c) >= k) return key;else return qsort(nums, l, left, k - b - c);}int findKthLargest(vector<int>& nums, int k)             {srand(time(NULL));return qsort(nums, 0, nums.size() - 1, k);}
};

库存管理 III

题目:库存管理 III

在这里插入图片描述
思路

和上题想法一致,使用快速选择的算法,使时间复杂度达到O(n)

C++代码


```class Solution 
{
public:void qsort(vector<int>& nums, int l, int r, int cnt){if(l >= r) return ;int key = nums[rand() % (r - l + 1) + l];int i = l, left = l - 1, right = r + 1;while(i < right){if(nums[i] < key) swap(nums[++left], nums[i++]);else if(nums[i] == key) i++;else swap(nums[--right], nums[i]);}int a = left - l + 1;int b = right - 1 - (left + 1) + 1;if(a >= cnt) qsort(nums, l, left, cnt);else if((a + b) >= cnt) return;else qsort(nums, right, r, cnt - a - b);}vector<int> inventoryManagement(vector<int>& stock, int cnt) {srand(time(NULL));qsort(stock, 0, stock.size() - 1, cnt);return {stock.begin(), stock.begin() + cnt};}
};

归并

排序数组

题目:排序数组

在这里插入图片描述C++代码

class Solution 
{// 归并vector<int> tmp;
public:void mergeSort(vector<int>& nums, int l, int r){if(l >= r) return ;// 计算中间位置int mid = (l + r) >> 1;// 对左右两部分进行归并排序mergeSort(nums, l, mid);mergeSort(nums, mid + 1, r);// 归并合并两个有序部分int i = l, j = mid + 1, k = 0;while(i <= mid && j <= r)tmp[k++] = (nums[i] <= nums[j]) ? nums[i++] : nums[j++];while(i <= mid) tmp[k++] = nums[i++];while(j <= r) tmp[k++] = nums[j++];// 拷贝回原数组for(int i = l; i <= r; i++){nums[i] = tmp[i - l];}} vector<int> sortArray(vector<int>& nums) {tmp.resize(nums.size());mergeSort(nums, 0, (int)nums.size() - 1);return nums;}
};

交易逆序对的总数

题目:交易逆序对的总数

在这里插入图片描述
思路
当我们将两个已排序的子数组合并成一个有序数组时,如果左侧子数组中的某个元素大于右侧子数组中的某个元素,那么左侧子数组中该元素之后的所有元素(包括该元素本身)都将与右侧子数组中的该元素形成逆序对。因此,我们可以通过计算这样的元素对数来统计逆序对的总数

C++代码

class Solution 
{int tmp[50010];
public:int reversePairs(vector<int>& record) {return mergeSort(record, 0, record.size() - 1);}int mergeSort(vector<int>& nums, int left, int right){if(left >= right) return 0; int ret = 0;// 中间,将数组分为两部分int mid = left + right >> 1;// [left, mid], [mid + 1, right]// 左边个数 + 排序 + 右边个数 + 排序ret += mergeSort(nums, left, mid);ret += mergeSort(nums, mid + 1, right);// 一左一右个数int cur1 = left, cur2 = mid + 1, i = 0;while(cur1 <= mid && cur2 <= right){if(nums[cur1] <= nums[cur2]){tmp[i++] = nums[cur1++];}else{ret += mid - cur1 + 1;  // 统计逆序对个数tmp[i++] = nums[cur2++];                }}// 处理剩余元素while (cur1 <= mid) tmp[i++] = nums[cur1++];while (cur2 <= right) tmp[i++] = nums[cur2++];// 拷贝回原数组for (int i = left; i <= right; ++i)nums[i] = tmp[i - left];return ret;}
};

计算右侧小于当前元素的个数

题目:计算右侧小于当前元素的个数

在这里插入图片描述
思路

这⼀道题的解法与求数组中的逆序对的解法是类似的,记录每⼀个元素的右边有多少个元素⽐⾃⼰⼩

归并排序的过程中,元素的下标是会跟着变化的,因此我们需要⼀个辅助数组,来将数组元素和对应的下标绑定在⼀起归并,也就是再归并元素的时候,顺势将下标也转移到对应的位置上

C++代码

class Solution 
{vector<int> ret;vector<int> index; // 记录当前元素的元素下标int tmpNums[500010];int tmpIndex[500010];
public:vector<int> countSmaller(vector<int>& nums) {int n = nums.size();ret.resize(n);  index.resize(n);// 初始化tmpIndexfor(int i = 0; i < n; i++)  index[i] = i; mergeSort(nums, 0, n - 1);return ret;}void mergeSort(vector<int>& nums, int left, int right){   if(left >= right) return ;// 根据中间元素划分区间int mid = (left + right) >> 1;// [left, mid]、[mid + 1, right]// 处理左右两部分mergeSort(nums, left, mid);mergeSort(nums, mid + 1, right);// 处理一左一右,降序数组int cur1 = left, cur2 = mid + 1, i = 0;while(cur1 <= mid && cur2 <= right){if(nums[cur1] <= nums[cur2]) {tmpNums[i] = nums[cur2];tmpIndex[i++] = index[cur2++];          }else {ret[index[cur1]] += right - cur2 + 1;tmpNums[i] = nums[cur1];tmpIndex[i++] = index[cur1++];  }}    // 处理剩余数组while(cur1 <= mid){tmpNums[i] = nums[cur1];tmpIndex[i++]=index[cur1++];}while(cur2 <= right){tmpNums[i] = nums[cur2];tmpIndex[i++]=index[cur2++];}// 还原for(int j = left; j <= right; j++){nums[j] = tmpNums[j - left];index[j] = tmpIndex[j - left];}}
};

翻转对

题目:翻转对

在这里插入图片描述
思路

翻转对和逆序对的定义⼤同⼩异,逆序对是前⾯的数要⼤于后⾯的数。⽽翻转对是前⾯的⼀个数要⼤于后⾯某个数的两倍。因此,我们依旧可以⽤归并排序的思想来解决这个问题

C++代码

class Solution 
{int tmp[50010];
public:int reversePairs(vector<int>& nums) {return mergeSort(nums, 0, nums.size() - 1);}int mergeSort(vector<int>& nums, int left, int right){if(left >= right) return 0;int ret = 0;int mid = (left + right) >> 1;ret += mergeSort(nums, left, mid);ret += mergeSort(nums, mid + 1, right);int cur1 = left, cur2 = mid + 1, i = left;while(cur1 <= mid) // 降序{while(cur2 <= right &&  nums[cur2] >= nums[cur1] / 2.0)cur2++;if(cur2 > right)break;ret += right - cur2 + 1;cur1++;}cur1 = left, cur2 = mid + 1;while(cur1 <= mid && cur2 <= right)tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur2++] : nums[cur1++];while(cur1 <= mid) tmp[i++] = nums[cur1++];while(cur2 <= right) tmp[i++] = nums[cur2++];for(int j = left; j <= right; j++)nums[j] = tmp[j];return ret;}
};

https://dhexx.cn/news/show-5436296.html

相关文章

新品 | Teledyne FLIR IIS 推出Forge 1GigE SWIR 短波红外工业相机系列

近日&#xff0c;51camera的合作伙伴Teledyne FLIR IIS推出了新品Forge 1GigE SWIR 130万像素的红外相机。 Forge 1GigE SWIR系列的首款相机配备宽频带、高灵敏度的Sony SenSWIR™️ 130万像素IMX990 InGaAs传感器。这款先进的传感器采用5um像素捕捉可见光和SWIR光谱&#xff…

【c++】反证法证明为什么c++不能像JavaScript的typeof那样自动判断数据类型

总述 我们探讨的是为什么C不能像JavaScript的typeof那样自动判断数据类型。通过反证法&#xff0c;我们假设存在这样的功能&#xff0c;并尝试推导出其内在矛盾&#xff0c;从而证明假设不成立。 分述 ‌假设提出‌&#xff1a; 假设在C中存在一个函数&#xff0c;该函数能够…

hrnet训练的pt模型结合目标检测进行关键点识别的更准确前向推理

本篇在将图像输入hrnet识别之前先进行目标检测来确定识别的位置&#xff0c;让识别更加精准。 本段代码设置了一个区域框BOX&#xff0c;让人走入区域内才开始检测&#xff0c;适用于考核等场景&#xff0c;也可以直接去掉BOX也是一样的效果。若画面背景中有多个行人&#xff0…

【web安全】——文件上传漏洞

1.文件上传漏洞 1.1漏洞概述与成因 文件上传漏洞是发生在有上传功能的应用中&#xff0c;如果应用程序对用户上传的文件没有控制或者存在缺陷&#xff0c;攻击者可以利用应用上传功能存在的缺陷&#xff0c;上传木马、病毒等有危害的文件到服务器上面&#xff0c;控制服务器。…

OpenFeign微服务部署

一.开启nacos 和redis 1.查看nacos和redis是否启动 docker ps2.查看是否安装nacos和redis docker ps -a3.启动nacos和redis docker start nacos docker start redis-6379 docker ps 二.使用SpringSession共享例子 这里的两个例子在我的一个博客有创建过程&#xff0c…

力扣9.30

1749. 任意子数组和的绝对值的最大值 给你一个整数数组 nums 。一个子数组 [numsl, numsl1, ..., numsr-1, numsr] 的 和的绝对值 为 abs(numsl numsl1 ... numsr-1 numsr) 。 请你找出 nums 中 和的绝对值 最大的任意子数组&#xff08;可能为空&#xff09;&#xff0c…

从零开始搭建UVM平台(八)-加入agent

书接上回&#xff1a; 从零开始搭建UVM平台&#xff08;一&#xff09;-只有uvm_driver的验证平台 从零开始搭建UVM平台&#xff08;二&#xff09;-加入factory机制 从零开始搭建UVM平台&#xff08;三&#xff09;-加入objection机制 从零开始搭建UVM平台&#xff08;四&…

7--苍穹外卖-SpringBoot项目中套餐管理 详解(一)

前言 目录 新增套餐 需求分析和设计 代码开发 根据分类id查询菜品 Controller层 Service层 ServiceImpl层 Mapper层 DishMapper.xml 新增套餐 实体类 mapper层 Service层 ServiceImpl层 Mapper层 SetmealMapper.xml setmealDishMapper.xml 套餐分页查询 需求分…

【STM32】 TCP/IP通信协议(1)--LwIP介绍

一、前言 TCP/IP是干啥的&#xff1f;它跟SPI、IIC、CAN有什么区别&#xff1f;它如何实现stm32的通讯&#xff1f;如何去配置&#xff1f;为了搞懂这些问题&#xff0c;查询资料可解决如下疑问&#xff1a; 1.为什么要用以太网通信? 以太网(Ethernet) 是指遵守 IEEE 802.3 …

[C++题目]力扣155. 最小栈

理清题目要求&#xff1a;栈具有先进后出的性质&#xff0c;如果要访问栈中所有的元素&#xff0c;必须一个个出栈才行。这道题的难点在于每进行一次出栈或入栈都得重新确定当前栈中最小的值&#xff0c;这个最小值不仅会因为入栈而变化&#xff0c;还会因为出栈而变化&#xf…