2. 向量及其线性运算
2.1 向量
- 既有大小又有方向的量称为向量。可以用希腊字母 α , β , γ , . . . \pmb{\alpha},\pmb{\beta},\pmb{\gamma},... α,β,γ,...表示,也可以用起点A和终点B表示成 A B ⃗ \vec{AB} AB
- 向量平移不变,与起点和终点的具体位置无关。
- 零向量 0 \pmb{0} 0的方向是任意的,规定零向量 0 \pmb{0} 0平行于任意一个向量。
- 向量 α \pmb{\alpha} α的大小用 ∣ α ∣ |\pmb{\alpha}| ∣α∣表示。
2.2 向量的线性运算
2.2.1 向量的加法
-
三角形法则,平行四边形法则,向量加法的结果还是向量。(还有高中的时候的记忆,不详细记了)
-
向量的加法满足
(1)交换律 α + β = β + α \pmb{\alpha}+\pmb{\beta}=\pmb{\beta}+\pmb{\alpha} α+β=β+α;
【证】若 α \pmb{\alpha} α与 β \pmb{\beta} β不平行,则
A B ⃗ = α = D C ⃗ \vec{AB}=\pmb{\alpha}=\vec{DC} AB=α=DC
β + α = A B ⃗ + D C ⃗ = A C ⃗ = α + β \pmb{\beta}+\pmb{\alpha}=\vec{AB}+\vec{DC}=\vec{AC}=\pmb{\alpha}+\pmb{\beta} β+α=AB+DC=AC=α+β
若 α \pmb{\alpha} α与 β \pmb{\beta} β平行(也是自己想的证明,欢迎数院大佬批评指正),则 α = k β , k \pmb{\alpha}=k\pmb{\beta},k α=kβ,k为任意常数,则
α + β = ( k + 1 ) β \pmb{\alpha}+\pmb{\beta}=(k+1)\pmb{\beta} α+β=(k+1)β
β + α = ( k + 1 ) β = α + β \pmb{\beta}+\pmb{\alpha}=(k+1)\pmb{\beta}=\pmb{\alpha}+\pmb{\beta} β+α=(k+1)β=α+β
(2)结合律:
( β + α ) + γ = β + ( α + γ ) (\pmb{\beta}+\pmb{\alpha})+\pmb{\gamma}=\pmb{\beta}+(\pmb{\alpha}+\pmb{\gamma}) (β+α)+γ=β+(α+γ)
2.2.2 向量的数乘
- λ α = { − ( ∣ λ ∣ α ) , λ < 0 ∣ λ ∣ α , λ ≥ 0 , λ ∈ R \lambda \pmb{\alpha}=\left\{\begin{array}{ll} -(|\lambda|\pmb{\alpha}), & \lambda<0\\ |\lambda|\pmb{\alpha}, & \lambda\ge 0 \end{array}\right.,\lambda \in \mathbb{R} λα={−(∣λ∣α),∣λ∣α,λ<0λ≥0,λ∈R(向量的数乘结果还是一个向量)
∣ λ α ∣ = ∣ λ ∣ ∣ α ∣ |\lambda \pmb{\alpha}|=|\lambda ||\pmb{\alpha}| ∣λα∣=∣λ∣∣α∣ - λ α \lambda \pmb{\alpha} λα的方向: α / / λ α \pmb{\alpha}//\lambda \pmb{\alpha} α//λα,当 λ > 0 , λ α \lambda>0,\lambda \pmb{\alpha} λ>0,λα与 α \pmb{\alpha} α同向,当 λ < 0 , λ α \lambda<0,\lambda \pmb{\alpha} λ<0,λα与 α \pmb{\alpha} α反向
- 向量数乘的性质:
λ , μ ∈ R \lambda,\mu \in \mathbb{R} λ,μ∈R
(1) λ α = 0 ⇔ λ = 0 或 α = 0 \lambda \pmb{\alpha}=0\Leftrightarrow \lambda=0或\pmb{\alpha}=\pmb{0} λα=0⇔λ=0或α=0;
(2) 1 ⋅ α = α , − 1 ⋅ α = − α 1\cdot\pmb{\alpha}=\pmb{\alpha},-1\cdot\pmb{\alpha}=-\pmb{\alpha} 1⋅α=α,−1⋅α=−α
(3) ( λ μ ) α = λ ( μ α ) (\lambda\mu) \pmb{\alpha}=\lambda(\mu\pmb{\alpha}) (λμ)α=λ(μα)
【证】不妨设 λ , μ ≠ 0 , α ≠ 0 \lambda,\mu\ne 0,\pmb{\alpha}\ne \pmb{0} λ,μ=0,α=0
∣ ( λ ⋅ μ ) α ∣ = ∣ λ ⋅ μ ∣ ⋅ ∣ α ∣ = ∣ λ ∣ ⋅ ∣ μ ∣ ⋅ ∣ α ∣ |(\lambda\cdot\mu)\pmb{\alpha}|=|\lambda\cdot\mu|\cdot|\pmb{\alpha}|=|\lambda|\cdot|\mu|\cdot|\pmb{\alpha}| ∣(λ⋅μ)α∣=∣λ⋅μ∣⋅∣α∣=∣λ∣⋅∣μ∣⋅∣α∣
λ ( μ α ) = ∣ λ ∣ ⋅ ∣ μ α ∣ = ∣ λ ∣ ⋅ ∣ μ ∣ ⋅ ∣ α ∣ = ∣ ( λ ⋅ μ ) α ∣ \lambda(\mu\pmb{\alpha})=|\lambda|\cdot|\mu\pmb{\alpha}|=|\lambda|\cdot|\mu|\cdot|\pmb{\alpha}|=|(\lambda\cdot\mu)\pmb{\alpha}| λ(μα)=∣λ∣⋅∣μα∣=∣λ∣⋅∣μ∣⋅∣α∣=∣(λ⋅μ)α∣
λ , μ \lambda,\mu λ,μ同号或异号都不改变等式两边向量的方向,故 ( λ μ ) α = λ ( μ α ) (\lambda\mu) \pmb{\alpha}=\lambda(\mu\pmb{\alpha}) (λμ)α=λ(μα)
(4) ( μ + λ ) α = μ α + λ α (\mu+\lambda)\pmb{\alpha}=\mu\pmb{\alpha}+\lambda\pmb{\alpha} (μ+λ)α=μα+λα
【证】不妨设 λ , μ ≠ 0 , α ≠ 0 \lambda,\mu\ne 0,\pmb{\alpha}\ne \pmb{0} λ,μ=0,α=0
如果 λ \lambda λ与 μ \mu μ同号,不妨设 λ > 0 , μ > 0 \lambda>0,\mu>0 λ>0,μ>0
∣ ( λ + μ ) ∣ α = ∣ λ + μ ∣ ⋅ ∣ α ∣ = ( λ + μ ) ∣ α ∣ = μ ∣ α ∣ + λ ∣ α ∣ |(\lambda+\mu)|\pmb{\alpha}=|\lambda+\mu|\cdot|\pmb{\alpha}|=(\lambda+\mu)|\pmb{\alpha}|=\mu|\pmb{\alpha}|+\lambda|\pmb{\alpha}| ∣(λ+μ)∣α=∣λ+μ∣⋅∣α∣=(λ+μ)∣α∣=μ∣α∣+λ∣α∣
∣ μ α + λ α ∣ |\mu\pmb{\alpha}+\lambda\pmb{\alpha}| ∣μα+λα∣,由于 λ > 0 , μ > 0 \lambda>0,\mu>0 λ>0,μ>0,方向一致,加法相当于两个长度叠加,故
∣ μ α + λ α ∣ = ∣ μ α ∣ + ∣ λ α ∣ = μ ∣ α ∣ + λ ∣ α ∣ |\mu\pmb{\alpha}+\lambda\pmb{\alpha}|=|\mu\pmb{\alpha}|+|\lambda\pmb{\alpha}|=\mu|\pmb{\alpha}|+\lambda|\pmb{\alpha}| ∣μα+λα∣=∣μα∣+∣λα∣=μ∣α∣+λ∣α∣
如果 λ \lambda λ与 μ \mu μ异号,不妨设 λ > 0 , μ < 0 , λ + μ > 0 \lambda>0,\mu<0,\lambda+\mu>0 λ>0,μ<0,λ+μ>0
( μ + λ ) α − μ α = ( μ + λ ) α + ( − μ α ) = λ α (\mu+\lambda)\pmb{\alpha}-\mu\pmb{\alpha}=(\mu+\lambda)\pmb{\alpha}+(-\mu\pmb{\alpha})=\lambda\pmb{\alpha} (μ+λ)α−μα=(μ+λ)α+(−μα)=λα
则 μ + λ > 0 , − μ > 0 \mu+\lambda>0,-\mu>0 μ+λ>0,−μ>0
回到第一种情况同理可证。
(5) λ ( α + β ) = λ α + λ β \lambda(\pmb{\alpha}+\pmb{\beta})=\lambda\pmb{\alpha}+\lambda\pmb{\beta} λ(α+β)=λα+λβ
【证】如果 α / / β \pmb{\alpha}//\pmb{\beta} α//β,存在一个 μ \mu μ使得 α = μ β \pmb{\alpha}=\mu\pmb{\beta} α=μβ
于是 λ ( α + β ) = λ ( μ β + β ) = λ ( μ + 1 ) β = ( λ μ + λ ) β \lambda(\pmb{\alpha}+\pmb{\beta})=\lambda(\mu\pmb{\beta}+\pmb{\beta})=\lambda(\mu + 1)\pmb{\beta}=(\lambda\mu+\lambda)\pmb{\beta} λ(α+β)=λ(μβ+β)=λ(μ+1)β=(λμ+λ)β
右边 λ α + λ β = ( λ μ + λ ) β \lambda\pmb{\alpha}+\lambda\pmb{\beta}=(\lambda\mu+\lambda)\pmb{\beta} λα+λβ=(λμ+λ)β
左边等于右边
如果 α \pmb{\alpha} α与 β \pmb{\beta} β不平行