算法与数据结构(三)

news/2025/2/12 18:45:49

一、堆

1,堆结构就是用数组实现的完全二叉树结构
根节点的左孩子的下标为:2i+1,右孩子为2i+2。两个孩子的父节点为(i-1)/2向下取整
2,完全二叉树中如果每棵子树的最大值都在顶部就是大根堆
从下往上将孩子与父节点进行比较,如果子叶节点的数值大于根节点,则互换,反之则停止向上比较
3,完全二叉树中如果每棵子树的最小值都在顶部就是小根堆
与大根堆相反
4,堆结构的heapInsert与heapify操作
以上大根堆与小根堆的比较就是heapInsert的过程;
大根堆heapInsert的代码演示:

void heapify(vector<int> &a, int index)
{while (a[index] > a[(index - 1) / 2]){//两个元素互换swap(a, a[index], a[(index - 1) / 2]);//向上反馈index = (index - 1) / 2;}
}

heapify操作:
这里举一个例子,当用户想要删除大根堆中的最大值,我们首先要将数组中最后一个数覆盖到数组中的0位置,然后根节点开始与两个子叶节点的最小值进行互换,然后被换之后再将换下来的根节点与当前位置的两个子叶节点进行比较互换操作。

void heapify(vector<int> &a, int index, int heapsize)
{//index表示从何位置开始进行heapify操作操作//heapsize表示数组的长度//设置左孩子的下标int left = index*2+1;//如果当前根节点还有叶节点,则操作while(left < heapsize){//两个孩子中,谁的值大,则把下标给largestint largest = left + 1 < heapsize && a[left+1] > a[left]? left+1 : left;//父和孩子之间的最大值谁最大,将下标给largestlargest = a[largest] > a[index] ? largest :index;//如果最大值就是根节点,则退出if(largest == index)break;//否则则交换swap(a, index, largest);index = largest;left = index*2+1;}
}

二、堆排序

思路:
1、将数组排列成堆结构,并通过heapInsert操作组成一个大根堆
2、将大根堆的0号位置的节点与最后一个节点互换,heapsize减1,并将堆中最后一个元素放到0位置,进行heapify操作
3、重复2步骤直至堆的大小为0,结束操作
动图展示:
请添加图片描述

代码实现:

void heapify(vector<int>&a, int index1, int heapsize)
{//进行heapifty//设置左孩子的节点int left = 2 * index1 + 1;//如果有左孩子,则开始进行heapiftywhile (left < heapsize){//如果有右孩子,且右孩子的数值较大,则将右孩子的下标设置为largestint largest = left + 1 < heapsize && a[left + 1] > a[left] ? left + 1 : left;//比较根节点与较大孩子的数值,如果根节点大,则跳出循环if (index1 == largest){break;}//否则互换swap(a, index1, largest);//设置将最大值的下标赋值给index1,继续向下index1 = largest;left = 2 * index1 + 1;}
}void heapInsert(vector<int> &a, int index)
{while (a[index] > a[(index - 1) / 2]){//两个元素互换swap(a, a[index], a[(index - 1) / 2]);//向上反馈index = (index - 1) / 2;}
}void heapSort(vector<int> &a, int heapsize)
{if (a.size() < 2)return;//将数组构建成大根堆for (int i = heapsize-1; i >= 0; i--){heapify(a, i, heapsize);}swap(a, 0, --heapsize);while (heapsize>0){//将变成大根堆的根节点与数组的最后一个数互换,并且将heapsize减小1heapify(a, 0, heapsize);swap(a, 0, --heapsize);}	
}

三、堆排序扩展

已知一个几乎有序的数组,几乎有序是指,如果把数组排好顺序的话,每个元素移动的距离可以不超过k,并且k相对于数组来说比较小。请选择一个合适的排序算法针对这个数据进行排序。
我们先构建一个元素数量为k的小根堆,因为移动距离最大为k,所以在极端情况下,使用这种方法将小根堆的根节点,也就是最小值放到0位置,然后指针向后移动一个位置,再将数组下表为k的元素放到小根堆内,再次组成一个小根堆,以此类推。最后将小根堆内的数依次从小到大弹出即可。
在c++中,multiset操作的底层就是二叉树的结构。

void SortArrayDistanceLessK(vector<int> &a, int k)
{//定义一个multiset容器multiset<int> s;//设置遍历的起始点int index = 0;//防止k超过数组长度,要限制传入multiset容器的元素数量int c = a.size();int b = min(c, k);for (; index <= b; index++){//将数组的前K个数依次传到multiset容器中s.insert(a[index]);}int i = 0;//依次将K后面的元素传入multiset容器中,并弹出第一个元素for (; index < a.size(); index++){//将k之后的元素一个一个压入到multiset中s.insert(a[index]);//将set的第一个元素放到数组的第一个位置,并将multiset容器第一个元素删除set<int>::const_iterator it = s.begin();a[i] = *it;//删除第一个元素s.erase(s.begin());i++;}//将multiset容器中的数据以此弹出while (!s.empty()){//将set的第一个元素放到数组的第一个位置,并将multiset容器第一个元素删除set<int>::const_iterator it = s.begin();a[i++] = *it;//删除第一个元素s.erase(s.begin());}
}

四、桶排序

基数排序:
c++代码示例

#include <cmath>int getDigit(int x, int d)
{//返回所需位数的数值return((x / (int)pow(10, d - 1)) % 10);
}//桶排序
void radixSort(vector<int> &a, int L, int R, int digit)
//L:要排序的左区域
//R:要排序的右区域
//digit十进制的位数
{//以十为基底int radix = 10;int i = 0, j = 0;//设置辅助空间,其大小与数组大小一致int *bucket = new int[R - L + 1];//有多少位就进出桶多少次,开始入桶for (int d = 1; d <= digit; d++){//count[0]为当前位(d位)是0的数字有多少个//count[1]为当前位(d位)是0-1的数字有多少个//count[2]为当前位(d位)是0-2的数字有多少个//count[i]为当前位(d位)是0-i的数字有多少个//申请一个辅助数组,记录上面的数据int *count = new int[radix];//将申请的内存全部附初值0for (int i = 0; i < radix; i++){count[i] = 0;		}//开始入桶操作for (i = L; i <=R; i++){j = getDigit(a[i], d);count[j]++;}//对辅助数组处理成前缀和for (i = 1; i < radix; i++){count[i] = count[i] + count[i - 1];}//开始出桶操作for (i = R; i >= L; i--){j = getDigit(a[i], d);bucket[count[j] - 1] = a[i];	count[j]--;}int j = 0;for (i = L; i <= R; i++){a[i] = bucket[j];j++;}}
}int maxbits(vector<int> &a)
{//定义一个最大数值暂存变量int largest = 0;for (int i = 0; i < a.size(); i++){largest = max(largest, a[i]);}//开始计算最大数值的十进制数一共有多少位int res = 0;while (largest != 0){res++;largest /= 10;}return res;
}void radixSort(vector<int> &a)
{if (a.size() < 2)return;radixSort(a, 0, a.size() - 1, maxbits(a));}

五、排序算法的稳定性及其汇总

同样值的个体之间,如果不因为排序而改变相对次序,就是这个排序是有稳定性的;否则就没有。
不具备稳定性的排序:
选择排序、快速排序、堆排序
具备稳定性的排序:
冒泡排序、插入排序、归并排序、一切桶排序思想下的排序
目前没有找到时间复杂度O(N*logN),额外空间复杂度0(1),又稳定的排序。
在这里插入图片描述注意!
1,归并排序的额外空间复杂度可以变成O(1),但是非常难,不需要掌握,有兴趣可以搜“归并排序内部缓存法”。

2,“原地归并排序”会让归并排序的时间复杂度变成o(N^2
)3,快速排序可以做到稳定性问题,但是非常难,不需要掌握,可以搜“01stable sort”
4,所有的改进都不重要,因为目前没有找到时间复杂度0(N*logN),额外空间复杂度0(1),又稳定的排序。
5,有一道题目,是奇数放在数组左边,偶数放在数组右边,还要求原始的相对次序不变,碰到这个问题,很难。


https://dhexx.cn/news/show-4633848.html

相关文章

美化代码,让页面更优雅!使用「页面代码美化」模块,让您的代码一目了然!

在网页设计和开发的过程中&#xff0c;优雅的代码是不可或缺的。如果您想要让您的页面代码更加美观、易读&#xff0c;那么不要错过「页面代码美化」模块&#xff01;这个强大的工具能够自动识别页面中的 <code> 和 <pre> 标签&#xff0c;并将其内部的代码进行美化…

OpenGL 纹理

1.简介 纹理是一个2D图片&#xff08;甚至也有1D和3D的纹理&#xff09;&#xff0c;它可以用来添加物体的细节&#xff1b;你可以想象纹理是一张绘有砖块的纸&#xff0c;无缝折叠贴合到你的3D的房子上&#xff0c;这样你的房子看起来就像有砖墙外表了。 为了能够把纹理映射(M…

Ingress详解

Ingress Service对集群外暴露端口两种方式&#xff0c;这两种方式都有一定的缺点&#xff1a; NodePort &#xff1a;会占用集群集群端口&#xff0c;当集群服务变多时&#xff0c;缺点明显LoadBalancer&#xff1a;每个Service都需要一个LB&#xff0c;并且需要k8s之外设备支…

科研工具-R-META分析与【文献计量分析、贝叶斯、机器学习等】多技术融合实践

Meta分析是针对某一科研问题&#xff0c;根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法&#xff0c;对来源不同的研究成果进行收集、合并及定量统计分析的方法&#xff0c;最早出现于“循证医学”&#xff0c;现已广泛应用于农林生态&#xff0c;资源环境等方面。…

AAOS 音频动态路由

文章目录 基本概念车载音频配置文件外部的配置音频区的方式车载音频服务配置路由流程框架中获取可用输出设备配置例子测试方法相关问题 基本概念 Android 管理来自 Android 应用的声音&#xff0c;同时控制这些应用&#xff0c;并根据其声音类型将声音路由到 HAL 中的输出设备…

解析Linux中断子系统之中断映射

中断是当前计算机系统的基础功能&#xff0c;也是系统响应外设事件的必备桥梁。不同的架构对中断控制器有不同的设计理念&#xff0c;本文针对ARM公司提供的通用中断控制器&#xff08;GIC,Generic Interrupt Controller&#xff09;介绍在linux系统中的硬件中断号与软件中断号…

投出去的简历石沉大海,1个月只有2个面试邀约,这正常吗?

我一介大专生&#xff0c;干了2年的点工&#xff0c;想着干这么长时间测试了&#xff0c;怎么也要涨薪冲击个12K了吧 去年我跟老板提了几次&#xff0c;好像都不怎么搭理我 今年金三银四&#xff0c;涨薪那边还是没着落&#xff0c;而我已经急不可耐了&#xff0c;既然你不给我…

Java 中的异常类型、异常处理机制、最佳实践

Java 异常是一种在程序运行时可能出现的错误或异常状况。它们可以由多种因素引起&#xff0c;例如无效输入、网络连接失败或系统资源不足等。 Java 提供了内置的异常类和处理机制&#xff0c;以便在程序出现异常时能够进行恰当的处理和响应。本文将探讨 Java 中的异常类型、异…

SpringBootWeb案例-2(上)

前面我们已经实现了员工信息的条件分页查询以及删除操作。 关于员工管理的功能&#xff0c;还有两个需要实现&#xff1a; 新增员工修改员工 首先我们先完成"新增员工"的功能开发&#xff0c;再完成"修改员工"的功能开发。而在"新增员工"中&…

遥感云大数据在灾害、水体与湿地领域典型

近年来遥感技术得到了突飞猛进的发展&#xff0c;航天、航空、临近空间等多遥感平台不断增加&#xff0c;数据的空间、时间、光谱分辨率不断提高&#xff0c;数据量猛增&#xff0c;遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇&#xf…